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The role of the magnocellular pathway in dyslexia—

reply to Skottun and Skoyles

The controversy about the significance of the magno-

cellular system for the aetiology of dyslexia (Stein, 2003)

has been ongoing for a long time. To investigate the

sensitivity of the magnocellular pathway we applied visual

evoked potentials elicited by motion stimuli (Scheuerpflug

et al., 2004, Schulte-Körne et al., 2004a,b).

Skoyles and Skottun (this issue) now question whether

VEPs elicited by motion stimuli are suited to investigate

magnocellular sensitivity. They argue that the magno-

cellular system is essentially a subcortical system. There-

fore, the registration of cortical neuronal activity does not

justify to conclude that this activity is mainly due to

magnocellular neurons.

However, the analysis of motion in nonhuman primate as

well as human visual systems suggest that cortical neurons

of the M pathway are sensitive to the motion perception.

The visual magnocellular pathway projects directly

through layers of the lateral geniculate to layer 4Ca of the

nonhuman primary visual cortex (V1) which in turn projects

(via layer 4B) directly or indirectly via thick stripes of area

V2 or area V3 to middle temporal (MT) and medial superior

temporal (MST) cortical areas (Zeki and Shipp, 1988). The

motion pathway extends beyond MST to ventral intraparietal

(VIP) area in the parietal lobe and the frontal eye fields

(Ungerleider and Desimone, 1986). A large majority of

neurons in the middle temporal visual area (MT) respond

selectively to the direction and speed of stimulus motion

(Maunsell and Van Essen, 1983).These neurons are orga-

nized into cortical columns on the basis of their preferred

direction of motion (Albright et al., 1984). MST, an area

lying ventral and anterior to MT in the depths of the superior

temporal sulcus has also been found to contain a large

majority of directionally selective neurons (Celebrini and

Newsome, 1994). The hypothetical human homologue of

MT and MST are areas V5 and V5a (Zeki and Shipp, 1988)

and the superior parietal-occipital area (SPO) (Tootell et al.,
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1996). Different numbers of cortical areas in the occipital and

temporal lobe have been identified when subjects were

viewing moving stimuli. Coherently moving stimuli acti-

vated the cortical areas V1, V5 and the parietal cortex (Zeki et

al., 1991). The findings from a lesion study of a single subject

with bilateral posterior damage, who exhibited dramatic

deficits in motion discrimination while performing normally

on tasks involving colour vision, confirms the importance of

these cortical areas to motion perception (Zihl et al., 1983).

Skoyles and Skottun mentioned that the magnocellular

system is not specifically sensitive for motion perception.

The finding that the motion of isoluminat colour stimuli

could be perceived, although the magnocellular system is

not sensitive for isoluminat colour stimuli, suggests that the

motion perception cannot be exclusively attributed to the

magnocellular system. Although this did not refer directly to

our published studies, since, we did not use colour stimuli.

This remark refers to the neurophysiological and neuroana-

tomical finding that motion and colour are processed by

different visual pathways, whereas motion is primarily

processed by the magnocellular pathway and colour by

the parvocellular pathway (Livingstone and Hubel, 1984;

Zeki, 1978). However, the neurophysiological relationship

between motion and colour processing is still under debate

(Takeuchi et al., 2003). It is beyond the scope of this

manuscript to review the discussion on the neurophysiolo-

gical basis of the relationship between motion and colour

perception. However, findings from neurophysiological

studies provide evidence that motion selective cortical

areas, MT and MST, are also sensitive to colour processing

(Wandell et al., 1999).

Another aspect mentioned by Skoyles and Skottun is the

long latency of the VEP elicited by the moving stimuli.

Skoyles and Skottun suggest that the latency of magno-

cellular neurons in the lateral geniculate nucleus is very

short. Consistently, we and other researchers investigating

VEPs in human subjects (Kubova et al., 1996; Lehmkuhle et

al., 1993; Livingstone et al., 1991) found group differences

between dyslexics and controls of at least 100 ms. In order to

analyse subcortical magnocellular neurons we measured

VEPs at the scalp and found peak latency at about 200 ms

suggesting that human P200 reflects excitatory depolarizing

potentials in apical dendrites of pyramidal cells. Perception

of visual motion can be intensively studied by applying

VEPs, in particular motion-onset VEPs (Bach and Ullrich,

1994; Hoffmann et al., 1999). In concordance with fMRI

studies in human subjects, electrophysiological correlates of

motion perception were found at motion sensitive cortical

areas (V1, V5/MT) (Probst et al., 1993). Thus, VEPs are well

suited to investigate neurophysiological correlates of motion

perception. These correlates are mainly attributed to cortical

areas, which receive direct input from the M pathway.

Skoyles and Skottun remark that magnocellular neurons

have little or no direction selectivity. Thus, our finding of

the VEP amplitude differences between dyslexic and

controls elicited by coherently moving dots cannot be
caused by magnocellular dysfunction. However, Schiller

et al. (1980) demonstrated that lesions of the M pathway in

monkeys eliminated the ability to detect motion of a group

of dots in a field of random dots. Furthermore, single-unit

physiological experiments have shown that directionally

selective neurons in area V5 are effectively driven by

stimuli, which contains a number of elements, all moving

coherently in one direction (Snowden et al., 1991). More

recently, microstimulation of single sites in MT showed that

the coherent motion perception is mainly influenced by MT

(Nichols and Newsome, 2002).

Finally, electrophysiological correlates of motion per-

ception mainly generated in cortical areas do not exclude

that other motion sensitive areas, i.e. subcortical areas

(LGN) are impaired in dyslexics. The MT receives input

from the M pathway. This means that the nature of MT

response depends on the afferent input to MT. Starting from

the ganglion cells of the retina via neuronal layers of the

lateral geniculate to V1 in the primary visual cortex, the

significance of the M pathway on perceptual behaviour can

only be expressed through the M pathway as a whole. Thus,

the reduced amplitude of the VEP over parietal-temporal

cortical areas in our study might also be influenced by

subcortical M pathway disruptions.

Since, the M pathway transmitted motion signals through

MT to higher cortical areas, the perceptual decision

individuals made in our experiments, do not result from

an impairment of the motion sensitive cortical areas only,

but also from the visual attention (Vidyasagar, 1999). This

means that the feedback projections from several cortical

areas selectively enhance or suppress responses of striate

neurons (Hupe et al., 1998). According to Vidyasagar

(1999), this feedback serves like attentional focussing of a

target within the receptive field. This could mean that the

receptive field of the neuron could shrink around an

attended location. Thus, attentional spotlight is a neural

mechanism that allows only selected outputs of a location to

higher visual cortical areas. One prediction from this theory

is that M-mediated attentional spotlighting via feedback on

the V1 and V2 acts as gate for the parvocellular inputs.

For reading words, this model predicts that attentional

spotlight brings the focus of attention to a set of letters. The

rapid and sequential spotlighting function of M pathway

during the fixation periods is necessary for the ventral M

pathway to order the letters appropriately (Vidyasagar,

1999). One further assumption is that some functions of the

parvocellular pathway are influenced by the magnocellular

pathway. Evidence for this was found by Vidyasagar and

Pammer (1999). This model may also serve to explain some

contradictory findings that behavioural deficits in discrimi-

nation tasks could better be explained by a parvocellular

deficit than by a magnocellular deficit. In summary, Skottun

is correct that the subcortical retinogeniculate pathway is

difficult to investigate by visually evoked potentials elicited

by moving stimuli. However, we like others (Demb et al.,

1997; Eden et al., 1996) are interested in investigating
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the cortical part of magnocellular system. Since, several

cortical areas, i.e. MT/V5, can be regarded as part of the

magnocellular pathway and motion sensitive neurons have

been found in these areas; it seems justified to argue that the

neurophysiological correlates of motion perception in

dyslexia are related to magnocellular function.
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