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         ABSTRACT  —    Our understanding of the causes of a develop-
mental disorder like dyslexia has received recent input from 
both neuroscience and genetics. The discovery of 4 candidate 
genes for dyslexia and the identifi cation of neuronal networks 
engaged when children read and spell are the basis for 
 introducing this knowledge into education. However, the 
 input from educational practitioners as well as empirical 
knowledge from research on learning also contribute signifi -
cantly to our understanding of how children acquire the basic 
skills for learning to read and spell. It is imperative to merge 
the knowledge acquired from research in the fi elds of neuro-
science, genetics, and empirical education, as well as to 
 understand how the learning brain and instruction interact. 
Doing so can be seen as a major step in attaining an optimal 
approach for teaching, reading, and spelling and for fi nding 
the best suited and most effective treatment concepts for 
 dyslexic children and adolescents.   

   NEUROCOGNITION 

 Worldwide several million children and adults have a specifi c 
impairment in learning to read and spell, despite average or 
higher cognitive abilities, adequate instruction, and normal 
vision and audition. The international classifi cation systems 

of diseases, the  International Statistical Classifi cation of   Diseases  
(ICD-10) and the  Diagnostic and Statistical Manual of Mental 

Disorders  ( DSM-IV  ™ ), listed this disorder, commonly referred 
to as dyslexia, as a reading and spelling disorder (ICD-10) 
or a reading disorder and a disorder of written expression 
( DSM-IV ), respectively. Additionally, common characteristics 
of this widespread developmental disorder are that it persists 
into adulthood, exhibits a high comorbidity with other disor-
ders (e.g., speech and language disorders, dyscalculia, and 
attention-defi cit/hyperactivity disorder [ADHD]), has a 
higher prevalence in boys, and is often characterized by a high 
incidence of symptoms of depression in adults, unemploy-
ment, suicide attempts, and school dropout ( Daniel et al., 
2006; Maughan, Rowe, Loeber, & Stouthamer-Loeber, 2003; 
Rutter et al., 2004; Shaywitz et al., 1999 ). 

 Due to intensive neuropsychological research, it has become 
clear that not only reading and spelling abilities are impaired 
but also processes that are strictly related to the development 
of these skills. The perception of single phonemes (the small-
est units of sound found within a given language, e.g.,  k  or  th  
in English), discrimination of phonemes, the retrieval of pho-
nemes from memory, and letter-to-phoneme mapping are all 
abilities that are subsumed under the construct of phonologi-
cal processing. The signifi cance of phonological processing 
for reading and spelling development has been strengthened by 
a multitude of studies (e.g.,  Bradley & Bryant, 1983; Torgesen, 
Wagnetr, & Rashotte, 1994; Wagner et al., 1997 ). Hereunto 
intervention and prevention studies show that training 
phonology skills before formal schooling lowers the risk of 
becoming dyslexic and signifi cantly improves the command 
of reading and spelling in dyslexic children ( Berninger 
et al., 2003; Schneider, Ennemoser, Roth, & Kuspert, 1999 ). 
Furthermore, teaching phonics in normal classroom settings and 
integrating the development of phonological skills into reme-
diation programs for dyslexic children would be benefi cial, as 
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these strategies were repeatedly found to improve reading and 
spelling development ( Rayner, Foorman, Perfetti, Pesetsky, & 
Seiden berg, 2001; Torgesen et al., 2001 ). 

 The acquisition of knowledge regarding the orthographic 
structure of language (spelling systems and rules) and mor-
phemes (the smallest meaningful units of language) is related 
to the development of spelling. This knowledge and the appli-
cation of this for reading and spelling are often summarized 
as orthographic processing. The empirical evidence is grow-
ing for the signifi cance of disturbed orthographic processing 
in dyslexia and remediation studies with spelling-disordered 
children show that the improvement of orthographic knowledge 
signifi cantly meliorates the spelling ability ( Schulte-Körne, 
Deimel, Hülsmann, Seidler, & Remschmidt, 2001; Schulte-
Körne, Deimel, & Remschmidt, 2003 ). 

 Finally, word reading requires the retrieval of lexical 
representations from memory. A cognitive process associ-
ated with automatic, rapid access to word representations 
is known as rapid automatic naming (RAN) ( Wolf, 1991 ). 
The speeded naming of lists of pictures, letters, numbers, 
and symbols are typical tasks in RAN exercises. RAN is 
correlated with reading and spelling development, and in 
preschool, it is a predictor for developing dyslexia ( Wolf, 
Bowers, & Biddle, 2000 ). It has also been   found that the 
RAN of pictures in dyslexic adults is impaired ( Wolf, 
Michel, & Ovrut, 1990 ), suggesting that problems with the 
retrieval from the word lexicon are stable and continuous, 
thus having an infl uence on reading and spelling through-
out the life span. 

 Besides these neuropsychological factors, short-term 
auditory memory, visual spatial abilities, visual attention, 
motor coordination, and basic auditory and visual processes 
have also been found to be related to reading and spelling 
development ( Ramus et al., 2003 ). However, for the pur-
poses of education and remediation, the signifi cance of 
phonological and orthographic processing for normal and 
impaired reading and spelling abilities are the most pre-
cisely validated factors to date.  

           Fig.   1.     Neurobiological correlates of cognitive 
processes in dyslexia.   

  NEUROSCIENCE 

 Research from cognitive and molecular neuroscience could 
build the link between behavioral and genetic fi ndings. The 
characterisation of neural circuits involved in learning to read 
and spell and the identifi cation of brain areas where white 
and gray matter are active in dyslexic subjects while reading 
are essential steps in understanding the complexity of brain 
and gene interactions in dyslexia. Clues to neural dysfunction 
come from postmortem studies of four dyslexic brains where 
several subtle cortical anomalies, all of which correspond well 
to the genetic model pointing toward a neuronal migration 
disorder, were found. Precisely, nests of neurons (ectopias) 
and focal microgyria were discovered primarily in left hemi-
sphere cortical areas associated with speech perception 
and processing ( Galaburda, Sherman, Rosen, Aboitiz, & 
Geschwind, 1985 ). 

 Brain imaging studies have identifi ed the neurobiological 
correlates of cognitive processes like letter perception, RAN, 
and phonological and orthographic processing. This research 
has primarily implicated three (rather large) brain regions: 
the left temporo-parietal, the left frontal, and the left occip-
ito-temporal regions, based on their differential activation in 
dyslexic subjects. 

 Specifi cally, in terms of the left temporo-parietal region, anom-
alous patterns of neuronal activity, correlated with phonological 
processing (e.g., rhyme detection and segmentation) and word 
reading, were repeatedly found in the left hemisphere perisylvian 
cortex in dyslexia (   Figure   1 ) ( Brunswick, McCrory, Price, Frith, 
& Frith, 1999; Pugh et al., 2000; Rumsey et al., 1997 ). 

 The left inferior frontal area has been associated with 
articulatory recoding (covert pronunciation), silent reading, 
and naming ( Pugh et al., 1996 ). Interestingly, when explicit 
demand on phonological processing, like word and pseudow-
ord reading was required, a higher activation in the inferior 
frontal gyrus in dyslexics was found ( Brunswick et al., 1999; 
Pugh et al., 2000 ), suggesting some compensatory functions 
of left frontal cortical areas ( Figure   1 ). 
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 Finally, robust differences between nondyslexic and dys-
lexic subjects were also reported in the left occipito-temporal 
areas ( McCrory, Mechelli, Frith, & Price, 2005; Paulesu 
et al., 2001; Salmelin, Service, Kiesila, Uutela, & Salonen, 1996; 
Shaywitz et al., 2002 ) when processing single words and 
pseudowords ( Figure   1 ). These fi ndings may be indicative of 
a visual word processing correlate ( McCandliss, Cohen, & 
Dehane, 2003 ). However, the left occipito-temporal region was 
also activated by presenting different stimuli (words, colors, 
pictures, and faces) and by different tasks (e.g., naming, Braille 
reading, and recognition) ( Büchel, Price, & Friston, 1998; 
Chao, Weisberg, & Martin, 2002; Hasson, Levy, Behrmann, 
Hendler, & Malach, 2002 ). Due to the fact   that no activation 
differences in this region were found when processing faces 
( Tarkiainen, Helenius, & Salmelin, 2003 ), this region was 
understood as a correlate of impaired phonological retrieval 
from visual input in dyslexia ( McCrory et al., 2005 ). 

 It is important to recognize that the aforementioned brain 
activation differences are merely correlated with dyslexia and 
cannot be interpreted as proof of causality. Functional research 
aimed at investigating the neural changes following therapy 
will help bring researchers one step further in pinpointing the 
causal grounds of dyslexia. To this end, several studies were 
able to demonstrate that the training of phonological process-
ing results in changes of neuronal activity of brain regions that 
are otherwise underactivated in dyslexic children and adults, 
for example, the left temporo-parietal region ( Aylward et al., 
2003; Eden et al., 2004; Richards et al., 2000; Shaywitz et al., 
2004 ). Furthermore,  Eden et al. (2004)  evaluated a phonologi-
cally based treatment study in dyslexic adults and was able 
to demonstrate that remediation can lead to several neuronal 
changes, not only restricted to brain areas of the left hemi-
sphere. The authors found that the right parietal and perisylvian 
regions were associated with compensatory processes in read-
ing in addition to the left inferior parietal cortex. One explana-
tion provided for the activation of right hemisphere areas could 
be a restricted availability of left hemisphere regions ( Eden 
et al., 2004 ). These fi ndings are encouraging and highlight how 
educational experience can infl uence functional anatomy. 
Despite this, further research is needed to precisely identify the 
respective brain areas involved and the respective processes 
underlying the therapeutic success in dyslexia.  

  EDUCATION 

 What is the most effective way that we can teach children to 
learn and spell? How can we optimize therapy programs 
aimed at the remediation of reading and spelling disorders 
in children? These are two of the most exciting research ques-
tions that are gaining interest in cognitive neurosciences 
( Tallal, 2004 ) and genetics ( Grigorenko, 2007 ) today. Integra-

ting knowledge from neuroscience into classroom practice is 
one strategic goal that has been recently proposed ( Tallal, 
2004 ) but also critically reviewed as a  “ bridge too far ”  ( Bruer, 
1997 ). To date, the majority of criticism revolves around the 
argument that cognitive neuroscience cannot elucidate the 
teachers ’  problem of how to teach their pupils to read and 
spell. In turn, following an overly optimistic promise of 
the success of  “ brain-based-learning ”  would disregard the 
importance of empirical research in educational and instruc-
tional science ( Stern, 2005 ). 

 The signifi cance of classroom instruction and intervention for 
learning, reading, and spelling has been found in several stud-
ies ( Torgesen, Rose, Lindamood, Conway, & Garvan, 1999; 
Vellutino, Fletcher, Snowling, & Scanlon, 2004 ). In general, 
integrating methods that facilitate the acquisition of phono-
logical awareness, learning the letter – sound correspondence 
and vice versa, and word reading skills are suited to ameliorate 
reading levels of poor readers. The classroom instructions for 
teaching spelling are different and depend on, for example, the 
child ’ s level of spelling achievement, the individual cognitive 
factors of the child (working memory resources, self-regulating 
abilities of the child), and the goals of teaching (e.g., pure spell-
ing, composition of text) ( Berninger et al., 2002 ). Evaluation of 
classroom instruction recommends the explicit instruction of 
writing skills and spelling training that outclasses mere spelling 
practice alone ( Berninger et al., 2003 ). 

 The differences   between languages and orthographies also 
interact with teaching and instruction (see  Ziegler & Goswami, 
2005 ). For example, in the English writing system, phonemes 
correspond to sets of alternative one- or two-letter functional 
spelling units ( Venezky, 1995 ). As an example, the phoneme /a/ 
can be spelled as the letter  a  in cat, as  ei  in eight, as  ey  in they, as 
 ai  in aim, or as  ea  in team ( Berninger et al., 2002 ). In contrast, 
in regular orthographies like Italian, the phoneme /a/ always 
corresponds to the letter  a . Thus, the instruction to apply 
phonics in order to transform the phonemes into spelling is 
confusing in English and relatively straightforward in Italian. 

 Currently, empirically validated knowledge from neuro-
science, which could be implemented in the instructional 
setting, for example, that which would give insight into 
how phoneme mapping across diverse languages is accrued, 
is not available. Nevertheless, there are initial reports avail-
able illustrating that knowledge from neuroscience could 
be effectively applied to instructional settings ( Kujala et al., 
2001; Simos et al., 2007 ). 

  Tallal et al. (1996)  developed a complex intensive train-
ing program based on fi ndings that dyslexic individuals suf-
fer from a basic auditory perception disorder characterized 
by defi cient neural processing of rapidly presented or rapidly 
changing dynamic sensory stimuli. Indeed, during training 
a signifi cant improvement in language tasks (word reading, 
passage comprehension) was observed in dyslexic children 
( Merzenich et al., 1996; Temple et al., 2003 ). In conjunction 
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with these behavioral improvements, it was found that a 
left-hemisphere temporo-parietal underactivation approached 
 “ normal ”  in the respective brain areas posttraining ( Temple 
et al., 2003 ). Based on this research, the authors have 
recommended an adequate implementation of the basic 
elements of their training into school education in order to 
base remediation and education on proven scientifi c methods 
( Tallal, 2004 ).  

  GENETICS 

 What is known about the causes of dyslexia so far? It is widely 
accepted that dyslexia is caused by several factors originating 
from the environment and genetics, as well as their interac-
tion. Although the specifi c nature of these factors remains to 
be identifi ed, a large portion is considered to be of neurobio-
logical and genetic origin. The existence of genetic effects in 
the development of dyslexia was recognized only a few years 
after the fi rst description of the disorder by Hinshelwood in 
1895, when several authors observed hereditary effects. 
Specifi cally, they noted that dyslexia appeared more fre-
quently within families than in the normal population 
( Hinshelwood, 1895; Stephenson, 1907; Thomas, 1905 ). The 
risk for a child to develop dyslexia today is estimated between 
40% and 60% if one parent is affected. The risk is further 
increased in the case that other family members are also 
affected. Furthermore, a sibling ’ s relative risk of being affected 
is increased three- to ten-fold ( Hallgren, 1950; Olson, Forsberg, 
& Wise, 1994; Schulte-Körne, Deimel, Müller, Gutenbrunner, 
& Remschmidt, 1996; Stephenson, 1907; Stevenson, 1991; 
Ziegler et al., 2005 ). 

 Another approach to estimate the infl uences of heritabil-
ity and the impact of environmental factors is the analysis 
of twins: although, on the genetic level, monozygotic twins 
are 100% identical, dizygotic twins only share 50% of their 
genetic information. Thus, the comparison of monozygotic 
and dizygotic twins with respect to a disorder such as dys-
lexia allows estimations of genetic and environmental infl u-
ences. Based on twin studies, it could be confi rmed that 
genetic factors substantially contribute to the familial clus-
tering of dyslexia ( Olson, 2002; Plomin & Kovas, 2005 ). The 
proportion of inherited factors is estimated to be about 40% –
 80% for the development of dyslexia, with highest estimates 
being reported for the subdimensions word reading and 
spelling (58% and 70%, respectively) ( Gayán & Olson, 2001; 
Olson, 2002; Plomin & Kovas, 2005 ). On the environmental 
level, it has been shown that the impact of factors that are 
shared between twins is low for word reading but substan-
tially higher (at about 14%) for reading- and spelling-corre-
lated traits, for example, phonological awareness ( Gayán & 
Olson, 2001 ). 

  Molecular Genetics 

 When hereditary infl uences for the development of a disease 
are assumed, the molecular identifi cation of the responsible 
genes offers the chance for a profound understanding of 
underlying biological factors. In contrast to monogenic disor-
ders (e.g., Chorea Huntington), in which a variation in one 
single gene is responsible for the majority of the cases, com-
plex disorders like dyslexia are caused by several genes. 
Thereby, every single gene has only a limited contribution to 
the development of those disorders, which makes the identi-
fi cation of the genetic pattern very challenging. 

 As with most complex disorders, an important step toward 
the identifi cation of the genetic basis underlying dyslexia is 
the analysis of a large number of DNA samples. Throughout the 
last few years, researchers (especially in the United States, 
United Kingdom, Canada, the Netherlands, and Germany) 
have collected DNA samples from a large number of families 
with at least one child suffering from dyslexia. Using those 
DNA samples, a variety of studies were conducted in order to 
explore genetic patterns in dyslexia and to identify particular 
chromosomal regions ( “ loci ” ) that confer susceptibility for 
dyslexia. As the human genome comprises 23 pairs of chro-
mosomes and about 3.2 billion base pairs, the identifi cation 
of loci is a crucial step in order to narrow down the region in 
which one looks for specifi c candidate genes. 

 Using an approach known as  “ linkage analysis, ”  nine chro-
mosomal regions that are most probably harboring genes 
linked to the development of dyslexia have been found so 
far. They are listed as DYX1 to DYX9 by the HUGO Gene 
Nomenclature Committee (   Figure   2 ; for a detailed review 
please refer to  Schumacher et al., 2006 ). From these nine loci, 
the evidence for regions on chromosomes 1, 3, 6, 15, and 18 is 
the most convincing, as positive results have been found in at 
least two of the large family samples, which means that the 
fi rst fi ndings have been replicated independently. There were 
also attempts to correlate these fi ndings not only to dyslexia 
itself but also to particular phenotypic measurements (e.g., 
phonological decoding, phoneme awareness, orthographic 
processing, RAN, working memory) but so far, initial fi nd-
ings in this direction are still waiting for confi rmation from 
independent groups. Nevertheless, the linkage fi ndings for 
dyslexia are relatively consistent when compared to other 
neuropsychiatric disorders such as schizophrenia or bipolar 
disorder. 

 According to the evidence for the chromosomal loci, the 
hope that several of these regions would harbor true sus-
ceptibility (candidate) genes was great. It   was thus not sur-
prising that the fi rst candidate gene fi ndings were presented 
shortly thereafter (Cope, Harold, et al., 2005;  Deffenbacher 
et al., 2004; Hannula-Jouppi et al., 2005; Meng, Smith, et al., 
2005; Paracchini et al., 2006; Schumacher et al., 2006; Taipale 
et al., 2003 ). To date, four candidate genes for dyslexia have 
been identifi ed:  DCDC2  and  KIAA0319  (both Chromosome 
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6),  DYX1C1  (Chromosome 15), and  ROBO1  (Chromosome 3) 
( Figure   2 ). 

  DCDC2  and  KIAA0319  are located on the short arm of 
Chromosome 6, only 500kb apart from each other (to be more 
precise, the region is named  “ 6p22, ”  with  “ 6 ”  indicating the 
chromosome,  “ p ”  the small arm, and 22 the specifi c band of 
the chromosome). For both genes, fi ndings linking them to 
dyslexia have been reported and replicated, with the strong-
est effect being observed in the most severely affected subjects 
( Cope, Harold, et al., 2005; Francks et al., 2004; Meng, Smith, 
et al., 2005; Schumacher et al., 2006 ). Although  Harold et al. 
(2006)  have recently reported evidence for some interaction 
between both genes in two UK samples, it is very likely that 
there is an independent contribution from both genes to the 
development of dyslexia because strong association for either 
of the two genes has been found in independent samples. So 
far, specifi c variations (mutations) having an effect on either 
the protein function or the expression of the genes have not 
been found, indicating that more research needs to be done 
on those genes in order to fi nd causal variation in the DNA 
sequence that is responsible for the gene ’ s contribution to the 
development of dyslexia. 

  DYX1C1  on chromosome 15q21 and  ROBO1  on chromosome 
3p12 have both been found by breakpoint mapping in Finnish 
families ( Hannula-Jouppi et al., 2005; Taipale et al., 2003 ). 
Different than in family studies with large numbers of fami-
lies, this approach uses only single families, in which dyslexia 
is inherited together ( “ cosegregates ” ) with a chromosomal 
aberration (translocation). The initial positive fi ndings 
for  DYX1C1  were not replicated ( Bellini et al., 2005; Cope, 
Hill, et al., 2005; Marino et al., 2005; Meng, Hager, et al., 
2005; Scerri et al., 2004; Wigg et al., 2004 ) and only recently 
some weak evidence for this gene was reported ( Brkanac 
et al., 2007; Marino et al., 2007 ). Currently, it might be ques-
tionable whether  DYX1C1  makes a signifi cant contribution 
to the development of dyslexia in non-Finnish European 
populations. 

 Whether or not  ROBO1  actually contributes to the devel-
opment of dyslexia is at present unclear. A critical point 
is that the correlation between the translocation and the 
dyslexia phenotype in the original translocation patient 
was not imperative; a sibling of the translocation carrier also 
had dyslexia without carrying the translocation ( Taipale 
et al., 2003 ). 

      
     Fig.   2.     Dyslexia susceptibility loci. The chromosomal regions which have been reported in linkage studies are shown in vertical lines. Horizontal lines 
represent dyslexia candidate genes: 1, ROBO1; 2, DCDC2; 3, KIAA0319; 4, DYX1C1.   
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 In addition to the described dyslexia susceptibility 
loci, linkage with dyslexia has also been reported for other 
chromosomal regions, although without replication in inde-
pendent samples. For example,  Igo et al. (2006)  were able to 
link word reading to chromosome 13q12 and  Raskind et al. 
(2005)  found evidence for linkage with phonemic decoding 
effi ciency, a measure for phonological decoding effi ciency on 
chromosome 2q22. 

 As mentioned, comorbidity plays an important role in dys-
lexia. Most markedly is the comorbidity between ADHD and 
dyslexia, with a prevalence signifi cantly higher than would 
be expected by chance (25% – 40%;  Dykman & Ackerman, 
1991; McGee & Share, 1988; Semrud-Clikeman et al., 1992 ). 
In order to assess the potential genetic aspects of the comor-
bidity observed between dyslexia and ADHD, two genome-
wide linkage studies have been published ( Gayán et al., 2005; 
Loo et al., 2004 ). Both studies aimed at identifying chromo-
somal loci with  “ pleiotropic ”  effects on ADHD and dyslexia: 
they looked for regions harboring genes, which are responsi-
ble for the development of either of the two disorders. One 
study ( Gayán et al., 2005 ) was conducted in dyslexia families 
with ADHD and evidence for linkage was shown in regions 
14q32, 13q32, and 20q11 ( Gayán et al., 2005 ), whereas a study 
in ADHD families identifi ed linkage regions on chromosomes 
10q11, 16p12, and 17q22 ( Loo et al., 2004 ). None of those 
genome-wide studies identifi ed regions that were already 
known for dyslexia susceptibility. A third study, carried out 
on Dutch sib pairs with ADHD, showed strong evidence for 
linkage to ADHD in region 15q21, which is identical to the 
dyslexia susceptibility locus DYX1 ( Bakker et al., 2003 ). 
Although the corresponding risk conferring genes in ADHD 
have not been identifi ed yet, it might be possible that, once 
identifi ed, they will contribute to the observed comorbidity 
between the two disorders.  

  Functional Analysis 

 All four currently identifi ed dyslexia candidate genes ( DCDC2 , 
 KIAA0319 ,  DYX1C1 , and  ROBO1 ) have already been investi-
gated regarding their functional relevance for the develop-
ment of dyslexia. As with most of the neuropsychiatric 
disorders, a direct assessment of protein functions in human 
brains is diffi cult as they can only be analyzed postmortem. 
Thus, in order to gain insights into the morphological and 
functional processes in dyslexic brains, the use of animal 
models is crucial. 

 In recent publications by  Meng, Smith, et al. (2005)  and 
 Paracchini et al. (2006) , the rodent homologues of  DCDC2  and 
 KIAA0319  have been targeted  in utero  in rats using the method 
of RNA interference. Specifi cally, the concentration of the 
specifi c gene was decreased artifi cially by inserting small 
molecules that explicitly inhibit the gene ’ s mediator on the 
way from gene to the gene product, the messenger RNA. For 

each of the two genes, this down regulation of its expression 
resulted in a signifi cant reduction of cortical neuronal migra-
tion in the brain. What is more, further functional evidence 
for  KIAA0319  was found via studies on human lymphoblast-
oid cell lines ( Paracchini et al., 2006 ). The authors were able 
to show that the expression of  KIAA0319  is reduced by 40% 
in carriers of a specifi c dyslexia risk haplotype for  KIAA0319  
when compared to other genes in the region. 

  DYX1C1   , which is expressed in many tissues, is also found 
in the central nervous system where it is particularly local-
ized in cortical neurons and white matter glial cells ( Taipale 
et al., 2003 ). Animal studies in embryonic rats demonstrated 
that  DYX1C1 , similar to  DCDC2  and  KIAA0319 , decreased 
the migration of neurons in the developing neocortex ( Wang 
et al., 2006 ). 

 Finally, the fourth candidate gene,  ROBO1 , has been 
mainly targeted via its orthologous genes in drosophila fl ies 
and mice ( Andrews et al., 2006; Kidd, Bland, & Goodman, 
1999; Seeger, Tear, Ferres-Marco, & Goodman, 1993 ). It was 
shown that this gene is involved in neuronal axon guidance in 
brain development and, when knocked out, increases the 
number of interneurons entering the cerebral cortex at 
specifi c developmental time points. 

 The functional evidence for the candidate genes in animal 
models may support their respective role in the development 
of dyslexia. This is particularly true for  DCDC2 ,  KIAA0139 , 
and  DYX1C1 — all of which were implicated in neuronal migration –

  because the concept of disturbed neuronal migration and axon 
growth is also supported from anatomical fi ndings in post-
mortem brain studies ( Galaburda, 1994; Galaburda & Kemper, 
1979; Galaburda et al., 1985 ). Together with the altered acti-
vation of reading- and spelling-related brain areas found in 
brain imaging studies, the discovery of specifi c molecular 
mechanisms is most interesting as it could provide a chance 
to see some of the phenotype-relevant processes directly.   

  PERSPECTIVES FOR RESEARCH AND EDUCATION 

  Molecular Genetics 

 While nine chromosomal loci have been identifi ed by linkage 
studies so far, only four of them have been attributed to 
specifi c candidate genes. It is thus necessary to further ana-
lyze those loci in order to obtain a comprehensive picture of 
the genes responsible for the positive linkage fi ndings. Recent 
advances in genotyping technology (e.g., Illumina and 
Affymetrix whole genome association chips) could also help 
to identify the genes and, equally interesting, new loci. 

 Because dyslexia is a complex disorder, it is expected that 
the genetic background of dyslexia, as with many other phe-
notypes, is in fact due to rather common polymorphisms with 
only moderate increases in risk, instead of rare mutations 
with strong effects on risk. This hypothesis of common 
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disease – common polymorphism has been the basis for the 
basic design of genome-wide association studies building on 
the seminal paper of  Risch and Merikangas (1996)  and a series 
of efforts to build the technology (mostly by Biotech compa-
nies) and knowledge base (the HAPMAP project) to correctly 
perform these studies. Recently, this approach has seen some 
great success, such as the discovery of polymorphisms in the 
IL23 receptor gene as a risk factor for infl ammatory bowel 
diseases ( Duerr et al., 2006 ) and very recently ( Easton et al., 
2007 ) in breast cancer. In dyslexia research, such a break-
through is yet to be achieved. Here it is important to note that 
fi ndings of one or more common polymorphisms associated 
with dyslexia do not invalidate prior fi ndings based on link-
age in single families. However, the relative contribution of 
the fi ndings based on family studies to the overall prevalence 
of the phenotype might be rather limited. 

 Furthermore, it is not immediately evident that the fi ndings 
in linkage and association studies need to overlap. As an exam-
ple, one can take a hypothetical locus with a risk disease allele 
frequency of 0.5 and a genotypic relative risk of 1.5 under a mul-
tiplicative risk model. In this case, the risk fraction attributed 
to the population would be 36%, or put into other words, more 
than a third of the cases would be attributed to this polymor-
phism, whereas the risk increase to sibs of a proband would be 
only 4%. Thus, if the baseline risk in the population were 10.0%, 
the risk to the sib of an affected individual due to such a locus 
would be increased to 10.4%. Clearly, this type of risk increase 
would be diffi cult to interpret in counseling situations in fami-
lies. It should be noted that this type of polymorphism would 
be virtually undetectable by linkage analysis (at least requiring 
several thousands of nuclear families to be tested). 

 Apart from the obvious consequences for the design of 
genetic studies in dyslexia, the consequences of such very 
moderate risk alterations in families cast severe doubts on the 
importance of such fi ndings for the individual diagnostics of 
dyslexia. However, it is evident that these results may indeed 
shed light on important biological pathways in the elucida-
tion of the etiology or (patho)genesis of dyslexia. Possibly 
their relative magnitudes of effects, both for the risk increases 
inferred or the population attributable risks may provide fur-
ther guidance here. 

 To overcome the limitations of family studies and to 
address the issue of having only moderate genetic effects of 
single genes, it is necessary to collect new large collectives. In 
  order to do just this, a recent project funded by the European 
Union (EU) in the Sixth Framework ( http://www.NeuroDys.
com ) addresses this problem and has started to build the larg-
est sample of children with dyslexia worldwide.  

  Neuroscience 

 Looking at the candidate genes known to date, the evidence 
for  DCDC2  and  KIAA0319  is the most convincing. Their identi-

fi cation represents an important step that will greatly improve 
our understanding of the molecular bases of dyslexia. Their 
involvement in cortical neuronal migration, as shown in fetal 
rats by specifi c siRNA experiments ( Meng, Smith, et al., 2005; 
Paracchini et al., 2006 ), enables fi rst insights into the molecu-
lar processes leading to dyslexia. However, neither the evi-
dence for  DCDC2  nor that for  KIAA0319  has been replicated in 
all samples, and contradictive fi ndings have also been reported 
for both genes. Thus, future investigations of the two genes 
will have to address the questions of whether those discrep-
ancies are due to population-specifi c effects or whether they 
represent specifi c phenotypic patterns that were intro-
duced into the samples by different ascertainment criteria. 
Furthermore, the lack of functional mutations in the candi-
date genes requires in-depth analysis of noncoding gene areas 
such as introns and up- and downstream regulatory regions. 
Mutations in those areas might result in over- or underexpres-
sion of target genes, thus setting the well-regulated molecular 
processes in the brain off balance. The hypothesis that the 
causal variants in the genes are of regulatory origin may be sup-
ported by the expression patterns of the two genes. Being 
widely expressed in the brain, none of the corresponding gene 
products is restricted to one specifi c brain area. Thus, the iden-
tifi cation of the specifi c regulatory partners such as transcrip-
tion factors or structural components would be the next area of 
interest and, furthermore, help to understand the complex 
interactions of molecules and structures in the brain. 

 Besides the functional analysis of identifi ed genes, the 
interaction between genotypes and the underlying cognitive 
and neurophysiological processes must be further analyzed. 
To date,   only some specifi c cognitive processes, for example, 
phonological processing and rapid naming, are known to be 
infl uenced by the already identifi ed candidate genes ( Fisher 
et al., 2002; Grigorenko et al., 1997; Raskind et al., 2005 ). 
However, this understanding is an important prerequisite for 
the identifi cation of the processes, which are closest to the 
known genes and their biological functions. 

 It is obvious that a gene is not an island. It has been already 
shown for dyslexia as well as other disorders that the action 
of genes (or rather the products of genes) is partially regu-
lated by the environment. These regulations need not neces-
sarily be of a very simple manner, thus maintaining relative 
advantages of certain genotypes over others across all pos-
sible environmental conditions. In the simplest terms, this 
means that what is advantageous in one environment may 
well be detrimental in another. However, this may also pro-
vide a useful entry point for genetic results into the therapy 
of dyslexia. Studies relating success of therapies to genotypes 
and/or genotype/environment combinations may provide use-
ful results with importance for dyslectic individuals, which 
should be the ultimate goal. It is interesting to see from other 
phenotypes, for example, from affective disorder ( Binder 
et al., 2004 ), that the effect sizes relating to genetic studies of 
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therapy success tend to be considerably larger than the effect 
sizes for studies on susceptibility. This renders these studies 
much more powerful, and at the same time, the results could 
be potentially more important on the individual level.  

  Education 

 Overall, one strategy that would target the conjoining of 
brain science and educational practice could be the integra-
tion of fi ndings from molecular genetics, neuroscience, and 
pedagogy. As stated by  Bruer (2002) , there is no empirical 
evidence that encourages or facilitates the integration of 
neuroscientifi c research results into educational practice. Having 
said this, what are the needs and also the perspectives for 
dyslexic individuals from neuroscience and genetic research? 

 Currently, there are no causative models of dyslexia. 
Therefore, the discovery of causative mutations in dyslexia 
will be unparalleled and will facilitate the understanding 
of the etiology for, at the very least, a subgroup of dyslexic 
individuals. Further, it could facilitate a very early diagnosis 
of dyslexia or identify the risk of becoming dyslexic at an early 
age. This, in turn, would offer the possibility of early preven-
tion. Most children suffering from dyslexia are diagnosed in 
the third grade. Depending on the schooling in the different 
countries, the children are between 7 and 9 years old. Although 
controversially debated, there are critical (or highly sensitive) 
periods in cortical development ( Huttenlocher, 2003 ) and 
in language learning specifi cally ( Kuhl, Williams, Lacerda, 
Stevens, & Lindblom, 1992 ). There is clear empirical evidence 
that speech perception is altered in dyslexia (e.g.,  Kraus 
et al., 1996; Schulte-Körne, Deimel, Bartling, & Remschmidt, 
1998 ). Adapting the concept of critical periods for dyslexia 
could mean that there is a phase of brain development where 
environmental speech signals alter neural circuits responsible 
for speech perception. If we can ascertain that a particular 
child is at risk for developing dyslexia and that the child has 
a mutation that infl uences cortical areas responsible for 
speech perception, early speech perception training could be 
justifi ed with good reason. 

 Besides language-related issues, the burden of dyslexia for 
the affected children and their families is known to be high. 
Thus, there is an urgent need to intervene as early as possi-
ble in order to avoid the psychosocial consequences of this 
disorder. Therefore combining the knowledge from the 
different disciplines discussed, neuroscience, education, and 
genetics in order to develop specifi c and effective prevention 
and remediation strategies will be an important challenge for 
the coming years. 

 In conclusion, we have attempted to highlight the intrica-
cies of what are considered to be the most plausible causes 
of dyslexia as discussed within a neurobiological and genetic 
framework. Furthermore, the environment, such as educational 
settings, is known to play a pertinent role in the subsequent 

expression of dyslexia and must therefore also be taken into 
consideration when discussing causal models of dyslexia. 

 Both educators and researchers could benefi t from actively 
integrating knowledge from each others ’  disciplines. Well-
informed educators, profi ting from knowledge about the 
diverse and complex nature of dyslexia from empirical 
science, would be assets to classroom settings and schools. 
Furthermore, their knowledge would aid them in their 
interaction with dyslexic children and their parents on a 
daily basis. Reciprocally, dyslexia researchers would benefi t 
from an increased awareness about educational practices 
revolving around reading and spelling instruction. This infor-
mation gives important insight into the environmental factors 
infl uencing the acquisition of reading and spelling and can be 
used to effectively expand etiological models of dyslexia. 

 Unfortunately, the available knowledge about dyslexia 
from neuroscience and genetics is currently too basic to 
draw specifi c and applicable conclusions for teaching and 
educational practice. Thus, current practices are based 
on behavioral fi ndings, such as treatment of impaired skills 
(e.g., phonics). What is positive is that there is legitimate hope 
that future results from actual collaborative interdisciplinary 
studies, like the EU-funded NeuroDys study, will improve our 
understanding of the complex interaction of neuroscience and 
genetics in dyslexia. Such fi ndings will consequently bring us 
closer to the point where, together with educators, specifi c 
plans (beyond treating phenotypes) for remedial education in 
dyslexia can be developed and implemented.     
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