Grundlage des Organoids, welches die Forschenden der Kinderklinik gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern von Helmholtz Munich (Gruppe von Carsten Marr) und des Instituts für Molekulare Biotechnologie in Wien (IMBA) sowie der MedUni Wien (Gruppe von Josef Penninger) entwickelt haben, bilden sogenannte „induzierte pluripotente Stammzellen“ (iPS-Zellen). Sie werden durch bestimmte molekulare Tricks aus Zellen der Haut oder Zellen der Niere, die mit dem Urin ausgeschieden werden, erzeugt. Durch eine spezifische Abfolge von Wachstumsfaktoren und Signalmolekülen ist es dem Team gelungen, iPS-Zellen binnen drei Wochen in die Haupt-Zelltypen des Knochenmarks zu differenzieren, die sich im Raum anordnen.
Die resultierenden Organoide bestehen aus einem Netzwerk von Blutgefäßen, einem Kompartiment mit verschiedenen Blutzelllinien und einem Bindegewebs-Kompartiment. Die Einbettung in eine sogenannte Extrazellulärmatrix schafft eine dreidimensionale Architektur mit Blutgefäßen, Perizyten und Blutzellen, die der Nische des humanen Knochenmarks ähnelt, wie sich durch verschiedene Analyseverfahren nachweisen ließ. „Außerdem entwickelten sich in diesen Organoide Zellen, die Eigenschaften von Blutstammzellen aufwiesen“, sagt Stephanie Frenz-Wießner. In Mäuse verpflanzt, konnte ein Teil der Zellen dort für eine bestimmte Zeit Nachschub an Blutzellen liefern. Und letztlich haben die Forschenden mit den Organoiden begonnen, die Knochenmarkserkrankung der beiden Kinder zu untersuchen. Dabei haben sie nachgewiesen, dass Organoide mit Mutationen im VPS45-Gen, einer bereits bekannten Genmutation, bei denen die Kinder auch Myelofibrose zeigen, tatsächlich Vernarbungen entwickeln. Das bedeutet kurzum: Das Modell funktioniert.
„Durch diese Knochenmarksorganoide aus iPS-Zellen können wir nun komplexe Interaktionen zwischen verschiedenen Zelltypen des Knochenmarks im Labor untersuchen“, sagt Christoph Klein, „und so versuchen, die Entwicklung von Krankheiten wie Knochenmarkversagen oder Leukämien besser zu verstehen.“ Perspektivisch besteht außerdem die Chance, dass patienten-spezifische Organoide genutzt werden könnten, um individualisierte Therapien zu entwickeln und zu testen.